EKS-HOS-00466
Eukaryotic Protein Kinase & Protein Phosphatase Database
TagContent
EKPD IDEKS-HOS-00466
Classification
Group/FamilyScoreE-ValueStartEndDomain Length
CMGC/MAPK450.41.2E-13424308285
StatusReviewed
Ensembl ProteinENSP00000229794
UniProt AccessionQ16539; A6ZJ92; A8K6P4; B0LPH0; O60776; Q13083; Q14084; Q8TDX0;
Protein NameMitogen-activated protein kinase 14
Protein Synonyms/Alias MAP kinase 14; MAPK 14; Cytokine suppressive anti-inflammatory drug-binding protein; CSAID-binding protein; CSBP; MAP kinase MXI2; MAX-interacting protein 2; Mitogen-activated protein kinase p38 alpha; MAP kinase p38 alpha; Stress-activated protein kinase 2a; SAPK2a;
Gene NameMAPK14
Gene Synonyms/Alias MAPK14; CSBP, CSBP1, CSBP2, CSPB1, MXI2, SAPK2A;
Ensembl Information
Ensembl Gene IDEnsembl Protein IDEnsembl Transcript ID
ENSG00000112062ENSP00000308669ENST00000310795
ENSG00000112062ENSP00000419837ENST00000468133
ENSG00000112062ENSP00000417531ENST00000491957
ENSG00000112062ENSP00000419141ENST00000472333
ENSG00000112062ENSP00000229795ENST00000229795
ENSG00000112062ENSP00000417065ENST00000474429
ENSG00000112062ENSP00000229794ENST00000229794
OrganismHomo sapiens
Functional DescriptionSerine/threonine kinase which acts as an essentialcomponent of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. MAPK14 interacts also with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF- induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3. MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9. Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14- mediated phosphorylation of EGFR itself as well as of RAB5A effectors. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF- kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates CDC25B and CDC25C which is required for binding to 14-3-3 proteins and leads to initiation of a G2 delay after ultraviolet radiation. Phosphorylates TIAR following DNA damage, releasing TIAR from GADD45A mRNA and preventing mRNA degradation. The p38 MAPKs may also have kinase-independent roles, which are thought to be due to the binding to targets in the absence of phosphorylation. Protein O-Glc-N-acylation catalyzed by the OGT is regulated by MAPK14, and, although OGT does not seem to be phosphorylated by MAPK14, their interaction increases upon MAPK14 activation induced by glucose deprivation. This interaction may regulate OGT activity by recruiting it to specific targets such as neurofilament H, stimulating its O-Glc-N-acylation. Required in mid-fetal development for the growth of embryo-derived blood vessels in the labyrinth layer of the placenta. Also plays an essential role in developmental and stress-induced erythropoiesis, through regulation of EPO gene expression. Isoform MXI2 activation is stimulated by mitogens and oxidative stress and only poorly phosphorylates ELK1 and ATF2. Isoform EXIP may play a role in the early onset of apoptosis. Phosphorylates S100A9 at 'Thr-113'.
Protein Length360
Protein Sequence
(FASTA)
MSQERPTFYR QELNKTIWEV PERYQNLSPV GSGAYGSVCA AFDTKTGLRV AVKKLSRPFQ 60
SIIHAKRTYR ELRLLKHMKH ENVIGLLDVF TPARSLEEFN DVYLVTHLMG ADLNNIVKCQ 120
KLTDDHVQFL IYQILRGLKY IHSADIIHRD LKPSNLAVNE DCELKILDFG LARHTDDEMT 180
GYVATRWYRA PEIMLNWMHY NQTVDIWSVG CIMAELLTGR TLFPGTDHID QLKLILRLVG 240
TPGAELLKKI SSESARNYIQ SLTQMPKMNF ANVFIGANPL AVDLLEKMLV LDSDKRITAA 300
QALAHAYFAQ YHDPDDEPVA DPYDQSFESR DLLIDEWKSL TYDEVISFVP PPLDQEEMES 360
Nucleotide Sequence
(FASTA)
ATGTCTCAGG AGAGGCCCAC GTTCTACCGG CAGGAGCTGA ACAAGACAAT CTGGGAGGTG 60
CCCGAGCGTT ACCAGAACCT GTCTCCAGTG GGCTCTGGCG CCTATGGCTC TGTGTGTGCT 120
GCTTTTGACA CAAAAACGGG GTTACGTGTG GCAGTGAAGA AGCTCTCCAG ACCATTTCAG 180
TCCATCATTC ATGCGAAAAG AACCTACAGA GAACTGCGGT TACTTAAACA TATGAAACAT 240
GAAAATGTGA TTGGTCTGTT GGACGTTTTT ACACCTGCAA GGTCTCTGGA GGAATTCAAT 300
GATGTGTATC TGGTGACCCA TCTCATGGGG GCAGATCTGA ACAACATTGT GAAATGTCAG 360
AAGCTTACAG ATGACCATGT TCAGTTCCTT ATCTACCAAA TTCTCCGAGG TCTAAAGTAT 420
ATACATTCAG CTGACATAAT TCACAGGGAC CTAAAACCTA GTAATCTAGC TGTGAATGAA 480
GACTGTGAGC TGAAGATTCT GGATTTTGGA CTGGCTCGGC ACACAGATGA TGAAATGACA 540
GGCTACGTGG CCACTAGGTG GTACAGGGCT CCTGAGATCA TGCTGAACTG GATGCATTAC 600
AACCAGACAG TTGATATTTG GTCAGTGGGA TGCATAATGG CCGAGCTGTT GACTGGAAGA 660
ACATTGTTTC CTGGTACAGA CCATATTGAT CAGTTGAAGC TCATTTTAAG ACTCGTTGGA 720
ACCCCAGGGG CTGAGCTTTT GAAGAAAATC TCCTCAGAGT CTGCAAGAAA CTATATTCAG 780
TCTTTGACTC AGATGCCGAA GATGAACTTT GCGAATGTAT TTATTGGTGC CAATCCCCTG 840
GCTGTCGACT TGCTGGAGAA GATGCTTGTA TTGGACTCAG ATAAGAGAAT TACAGCGGCC 900
CAAGCCCTTG CACATGCCTA CTTTGCTCAG TACCACGATC CTGATGATGA ACCAGTGGCC 960
GATCCTTATG ATCAGTCCTT TGAAAGCAGG GACCTCCTTA TAGATGAGTG GAAAAGCCTG 1020
ACCTATGATG AAGTCATCAG CTTTGTGCCA CCACCCCTTG ACCAAGAAGA GATGGAGTCC 1080
TGA 1083
Domain Profile
S: 1     yeslkplgeGaygvvvsavdkrteervaikklsrpfqketsakrtlRElkllkelkheNi  60
         y++l+p+g+Gayg v++a+d++t+ rva+kklsrpfq+ ++akrt+REl+llk++kheN+
Q: 24    YQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQSIIHAKRTYRELRLLKHMKHENV  83
         899*********************************************************
S: 61    iklldvftpeeeleelkdvYlvtelmetdLkkviksqklsdehiklllyqilrglkylHs  120
         i lldvftp+++lee++dvYlvt+lm++dL++++k qkl+d+h+++l+yqilrglky+Hs
Q: 84    IGLLDVFTPARSLEEFNDVYLVTHLMGADLNNIVKCQKLTDDHVQFLIYQILRGLKYIHS  143
         ************************************************************
S: 121   anviHrDlKPsNllvnedcelkildFGlarsadkekekklteyvatrwYraPeillslke  180
         a++iHrDlKPsNl+vnedcelkildFGlar++d+e    +t+yvatrwYraPei+l++++
Q: 144   ADIIHRDLKPSNLAVNEDCELKILDFGLARHTDDE----MTGYVATRWYRAPEIMLNWMH  199
         **********************************9....*********************
S: 181   ytkavDiWsvGCIlaElltgkplfpgkdeidqlekilevlgtpseeflkkieseearnyi  240
         y+++vDiWsvGCI+aElltg++lfpg+d+idql++il+++gtp +e lkki+se+arnyi
Q: 200   YNQTVDIWSVGCIMAELLTGRTLFPGTDHIDQLKLILRLVGTPGAELLKKISSESARNYI  259
         ************************************************************
S: 241   kslpkkkkkdfeelfpkaseealdLleklLvldpdkRisveeaLehpYl  289
         +sl++++k++f+++f  a++ a+dLlek+Lvld+dkRi++++aL+h Y+
Q: 260   QSLTQMPKMNFANVFIGANPLAVDLLEKMLVLDSDKRITAAQALAHAYF  308
         ***********************************************96
Domain Sequence
(FASTA)
YQNLSPVGSG AYGSVCAAFD TKTGLRVAVK KLSRPFQSII HAKRTYRELR LLKHMKHENV 60
IGLLDVFTPA RSLEEFNDVY LVTHLMGADL NNIVKCQKLT DDHVQFLIYQ ILRGLKYIHS 120
ADIIHRDLKP SNLAVNEDCE LKILDFGLAR HTDDEMTGYV ATRWYRAPEI MLNWMHYNQT 180
VDIWSVGCIM AELLTGRTLF PGTDHIDQLK LILRLVGTPG AELLKKISSE SARNYIQSLT 240
QMPKMNFANV FIGANPLAVD LLEKMLVLDS DKRITAAQAL AHAYF 285
Keyword3D-structure; Acetylation; Alternative splicing; Apoptosis; ATP-binding; Complete proteome; Cytoplasm; Direct protein sequencing; Kinase; Nucleotide-binding; Nucleus; Phosphoprotein; Polymorphism; Reference proteome; Serine/threonine-protein kinase; Stress response; Transcription; Transcription regulation; Transferase; Ubl conjugation.
Sequence SourceEnsembl
Orthology
Ortholog group
Ailuropoda melanoleuca"; ?>Anolis carolinensis"; ?>Bos taurus"; ?>Caenorhabditis elegans"; ?>Callithrix jacchus"; ?>Canis familiaris"; ?>Cavia porcellus"; ?>Ciona savignyi"; ?>Danio rerio"; ?>Drosophila melanogaster"; ?>Echinops telfairi"; ?>Equus caballus"; ?>Felis catus"; ?>Gadus morhua"; ?>Gallus gallus"; ?>Gasterosteus aculeatus"; ?>Latimeria chalumnae"; ?>Loxodonta africana"; ?>Macaca mulatta"; ?>Meleagris gallopavo"; ?>Monodelphis domestica"; ?>Mus musculus"; ?>Mustela putorius furo"; ?>Myotis lucifugus"; ?>Nomascus leucogenys"; ?>Oreochromis niloticus"; ?>Oryctolagus cuniculus"; ?>Oryzias latipes"; ?>Otolemur garnettii"; ?>Pan troglodytes"; ?>Pelodiscus sinensis"; ?>Petromyzon marinus"; ?>Pongo abelii"; ?>Rattus norvegicus"; ?>Sarcophilus harrisii"; ?>Sus scrofa"; ?>Taeniopygia guttata"; ?>Takifugu rubripes"; ?>Tetraodon nigroviridis"; ?>Vicugna pacos"; ?>Xiphophorus maculatus"; ?>Saccharomyces cerevisiae"; ?>Schizosaccharomyces pombe"; ?>
EKS-AIM-00428
EKS-ANC-00445
EKS-BOT-00460
EKS-CAE-00384
EKS-CAJ-00464
EKS-CAF-00459
EKS-CAP-00492
EKS-CIS-00219
EKS-DAR-00865
EKS-DRM-00220
EKS-ECT-00061
EKS-EQC-00450
EKS-FEC-00437
EKS-GAM-00266
EKS-GAG-00383
EKS-GAA-00556
EKS-LAC-00471
EKS-LOA-00466
EKS-MAM-00457
EKS-MEG-00376
EKS-MOD-00451
EKS-MUM-00490
EKS-MUP-00451
EKS-MYL-00453
EKS-NOL-00426
EKS-ORN-00579
EKS-ORC-00435
EKS-ORL-00528
EKS-OTG-00466
EKS-PAT-00434
EKS-PES-00406
EKS-PEM-00253
EKS-POA-00448
EKS-RAN-00472
EKS-SAH-00428
EKS-SUS-00406
EKS-TAG-00522
EKS-TAR-00573
EKS-TEN-00571
EKS-VIP-00087
EKS-XIM-00570
EKS-SAC-00099
EKS-SCP-00102
Gene Ontology
GO:0005829; C:cytosol
GO:0044445; C:cytosolic part
GO:0005739; C:mitochondrion
GO:0005654; C:nucleoplasm
GO:0000922; C:spindle pole
GO:0005524; F:ATP binding
GO:0004707; F:MAP kinase activity
GO:0004708; F:MAP kinase kinase activity
GO:0051525; F:NFAT protein binding
GO:0070935; P:3'-UTR-mediated mRNA stabilization
GO:0001525; P:angiogenesis
GO:0006915; P:apoptotic process
GO:0000902; P:cell morphogenesis
GO:0006928; P:cellular component movement
GO:0071363; P:cellular response to growth factor stimulus
GO:0071479; P:cellular response to ionizing radiation
GO:0006935; P:chemotaxis
GO:0002062; P:chondrocyte differentiation
GO:0000077; P:DNA damage checkpoint
GO:0019395; P:fatty acid oxidation
GO:0010467; P:gene expression
GO:0006006; P:glucose metabolic process
GO:0045087; P:innate immune response
GO:0031663; P:lipopolysaccharide-mediated signaling pathway
GO:0016071; P:mRNA metabolic process
GO:0042692; P:muscle cell differentiation
GO:0002755; P:MyD88-dependent toll-like receptor signaling pathway
GO:0048011; P:nerve growth factor receptor signaling pathway
GO:0030316; P:osteoclast differentiation
GO:0018105; P:peptidyl-serine phosphorylation
GO:0030168; P:platelet activation
GO:0045648; P:positive regulation of erythrocyte differentiation
GO:0051149; P:positive regulation of muscle cell differentiation
GO:2000379; P:positive regulation of reactive oxygen species metabolic process
GO:0045944; P:positive regulation of transcription from RNA polymerase II promoter
GO:0046777; P:protein autophosphorylation
GO:0007265; P:Ras protein signal transduction
GO:0051090; P:regulation of sequence-specific DNA binding transcription factor activity
GO:0009749; P:response to glucose stimulus
GO:0032495; P:response to muramyl dipeptide
GO:0042770; P:signal transduction in response to DNA damage
GO:0007519; P:skeletal muscle tissue development
GO:0051403; P:stress-activated MAPK cascade
GO:0090400; P:stress-induced premature senescence
GO:0051146; P:striated muscle cell differentiation
GO:0008063; P:Toll signaling pathway
GO:0034130; P:toll-like receptor 1 signaling pathway
GO:0034134; P:toll-like receptor 2 signaling pathway
GO:0034138; P:toll-like receptor 3 signaling pathway
GO:0034142; P:toll-like receptor 4 signaling pathway
GO:0006351; P:transcription, DNA-dependent
GO:0035666; P:TRIF-dependent toll-like receptor signaling pathway
GO:0048010; P:vascular endothelial growth factor receptor signaling pathway
KEGG
hsa:1432;
InterPros
IPR011009; Kinase-like_dom.
IPR003527; MAP_kinase_CS.
IPR008352; MAPK_p38.
IPR000719; Prot_kinase_cat_dom.
IPR017441; Protein_kinase_ATP_BS.
IPR002290; Ser/Thr_dual-sp_kinase_dom.
Pfam
PF00069; Pkinase; 1.
SMARTs
SM00220; S_TKc; 1.
Prosites
PS01351; MAPK; 1.
PS00107; PROTEIN_KINASE_ATP; 1.
PS50011; PROTEIN_KINASE_DOM; 1.
PS00108; PROTEIN_KINASE_ST; FALSE_NEG.
Prints
PR01773; P38MAPKINASE.
Created Date20-Feb-2013